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Introduction
(Lee and Lee, 2022) proved asymptotic properties for Bayesian Neural Network in
Besov space. Theorem 1 proves asymptotic properties of Bayesian ReLU networ-
ks with spike-and-slab prior. Since computational cost of the prior is unsuitable,
shrinkage prior is introduced and the same property with the prior is proven in
Theorem 3. This report includes details of the model setting, statement and proof
of Theorem 3.

Main contents

Model
Suppose that n input-output observations Dn = (Xi,yi)n

i=1 ⊂ [0,1]d ×R are indepen-
dent random sample from a regression model

yi = f0(Xi) + ξi (i = 1,2, · · · , n), (1)

where (ξi)n
i=1 is an i.i.d sequence of Gaussian noises N (0,σ2) with known variance

σ2 > 0 and f0 is the true regression function belonging to the space F . We consider
neural network space Φ(L, W, S, B) = Φ(Θ(L, W, S, B)) generated by a parameter
space Θ(L,W,S,B) defined in (Lee and Lee, 2022), and a prior defined as following
conditions. The prior will be specified to shrinkage prior later.

π(L = Ln) = π(W = Wn) = π(S = Sn) = π(B = Bn) = 1, (2)

π(θ|L,W,S,B) =
T∏

j=1
g(θj|L,W,S,B) (3)

where T = |Θ(L,W,S,B)|, and g(t) := g(t|L, W, S, B) is a symmetric density fun-
ction decreasing on t > 0.
For function spaces, we consider Besov space Bs

p,q(Ω) = {f : ∥f∥Bs
p,q

< ∞} defined
in (Lee and Lee, 2022). Also, suppose that 0 < F < ∞, 0 < p,q ≤ ∞, w :=
d(1/p − 1/2)+ < s < ∞ and set ν = (s − w)/(2w). Assume that m ∈ N satisfies
0 < s < min{m,m − 1 + 1/p}. Let Nn = ⌈nd/(2s+d)⌉, W0 = 6dm(m + 2) + 2d and

Ln = L(Nn), Wn = NnW0,

Sn = (Ln − 1)W 2
0 Nn + Nn, Bn = O(NΞ

n )
(4)

where c(d,m) = (1 + 2de
(2e)m

√
m

)−1, L(Nn) = 3 + 2⌈log2(
3d∨m

τnc(d,m)
) + 5⌉⌈log2(d ∨ m)⌉,

τn = N−s/d−(v−1+d−1)(d/p−s)+
n (log Nn)−1 and Ξ = (ν−1 + d−1)(1 ∨ (d/p − s)+). Then

we can show the following equations.

Ln = O(log n), Wn = O(Nn), Sn = O(Nn log n) (5)
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Lemmas
Lemma 3, 5, 6 from (Lee and Lee, 2022), and the rest of lemmas are directly used
in the proof of theorem 3.

Lemma 3 Assume model (1). Suppose that F is uniformly bounded. Let

Aϵ,M := {f ∈ F : ∥f − f0∥n ≤ Mϵ}

, where ∥ · ∥n denotes the empirical L2 norm,

∥f∥n = ( 1
n

n∑
i=1

(f(Xi))2)1/2

If there exist C > 2/σ2 and Fn ⊂ F such that

sup
ϵ>ϵn

log N(ϵ/36, Aϵ,1 ∩ Fn, ∥ · ∥n) ≤ nϵ2
n, (6)

Π(Aϵn,1) ≥ e−Cnϵ2
n , (7)

Π(F − Fn) = o(e−(Cσ2+2)nϵ2
n) (8)

for any ϵn → 0, nϵ2
n → ∞,

Π(Ac
ϵn,Mn

|Dn) → 0

in P
(n)
f0 -probability as n → ∞ for any Mn → ∞.

Lemma 5 For L, W, S ∈ N and B, a > 0, define a function space

Φ(L,W,S,B,a) = {fθ : θ ∈ Θ(L,W,S,B,a)}

where
Θ(L,W,S,B,a) =

{
θ : (θiI(|θi| > a))Tn

i=1 ∈ Θ(L,W,S,B)
}

. Then, ∀ϵ ≥ 2aL(B ∨ 1)L−1(W + 1)L,

log N(ϵ, Φ(L,W,S,B,a),|| · ||L∞ ≤ (S + 1) log(2ϵ−1L(B ∨ 1)L(W + 1)2L) (9)

Lemma 6 Suppose that 0 < p,q,r ≤ ∞, w := d(1/p − 1/r)+ < s < ∞ and ν =
(s − w)/(2w). Assume that N ∈ N is sufficiently large and m ∈ N satisfies 0 < s <
min{m, m − 1 + 1/p}. Let W0 = 6dm(m + 2) + 2d. Then,

sup
f0∈U(Bs

p,q([0,1]d))
inf

f∈Π(L,W,S,B)
∥f0 − f∥Lr ≲ N−s/d (10)

for

L = 3 + 2
⌈
log2

(
3d∨m

τ(N)c(d,m)

)
+ 5

⌉
⌈log2(d ∨ m)⌉, W = NW0, (11)

S = (L − 1)W 2
0 N + N, B = O(N (v−1+d−1)(1∨(d/p−s)+)), (12)

where U(H) is the unit ball of a quasi-Banach space H, c(d,m) =
(

1 + 2de
(2e)m

√
m

)−1

and τ(N) = N−s/d−(v−1+d−1)(d/p−s)+(log N)−1.

2 of 6



Yongseok Hur
Theorem 3 of (Lee and Lee, 2022) 8th Feb 2023

Lemma Fix ϵ > 0 and θ ∈ Θ(L,W,S,B). For any θ∗ ∈ Θ(L,W,S,B) which satisfies
∥θ − θ∥∞ < ϵ, then

|fθ(x) − fθ∗(x)| ≤ ϵL(B ∨ 1)L−1(W + 1)L (13)

This lemma is proved from the proof of lemma 4 in (Lee and Lee, 2022).

Lemma (tailbound of binomial distribution, Arratia and Gordon, 1989) Let Sn ∼
B(n, p), and H(a, p) be the relative entropy between p, a, i.e.

H = H(a, p) = (a) log a

p
+ (1 − a) log 1 − a

1 − p
(14)

. For 0 ≤ p < a < 1, and for n ∈ N, with H = H(a,p),

P (Sn ≥ an) ≤ e−nH (15)

Statement
Assume model (1), prior distribution (2) and (3). Suppose that 0 < F < ∞, 0 <
p, q ≤ ∞ and d(1/p−1/2)+ < s < min{m, m−1+1/p}. Let ϵn = n−s/(2s+d)(log n)3/2

and g(t) be a function such that

an ≤ ϵn

72Ln(Bn ∨ 1)Ln−1(Wn + 1)Ln

un =
∫

[−an,an]
g(t|Ln,Wn,Sn,Bn)dt

(16)

satisfies
Sn

Tn

> 1 − un ≥ Sn

Tn

ηn, (17)

− log g(Bn|Ln,Wn,Sn,Bn) ≲ (log n)2, (18)

continuous on [−Bn, Bn] and

vn =
∫

[−Bn,Bn]c
g(t|Ln,Wn,Sn,Bn)dt = o

(
e−K0nϵ2

n

)
, (19)

where ηn = exp(−Knϵ2
n/Sn) for some K, K0 > 4. The posterior distribution con-

centrates at the true function with a rate ϵn. That is,

Π(fθ ∈ Φ ∩ UB(F ) : ||fθ − f0||n > Mnϵn|Dn) → 0

in P
(n)
f0 -probability as n → ∞ for any Mn → ∞.
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Proof
We mainly use lemma 3 to show contraction rate of the posterior distribution. Thus
we let F = Φ ∩ UB(F ), and it is enough to show that there exists a constant
C ′′ > 2/σ2 and Fn ∈ F which satisfies

sup
ϵ>ϵn

log N(ϵ/36, Aϵ,1 ∩ Fn,∥ · ∥n) ≤ nϵ2
n (20)

− log Π(Aϵn,1) ≤ C ′′nϵ2
n (21)

Π(F − Fn) = o(e−(C′′+σ2+2)nϵ2
n) (22)

for sufficiently large n. Let Fn = Φ(Ln,Wn,Sn,Bn,an) ∩ UB(F ), Φ defined as in lem-
ma 5. We check the three condition (20), (21), (22) in (a), (b), (c) respectively.

(a)
sup
ϵ>ϵn

log N(ϵ/36, Aϵ,1 ∩ Fn, ∥ · ∥n)

≤ sup
ϵ>ϵn

log N(ϵ/36,Aϵ,1 ∩ Fn,∥ · ∥L∞)

≤ sup
ϵ>ϵn

log N(ϵ/36,Fn,∥ · ∥L∞)

≤ log N(ϵn/36,Fn,∥ · ∥L∞)

≤(Sn + 1) log Ln + Ln log((Bn ∨ 1)(Wn + 1)2) − log ϵn

72
≲Nn(log n)3

=nϵ2
n

(23)

for sufficiently large n. the fourth inequality satisfies by lemma 5, and the last
inequality satisfies from the previous condtion of parameters (5). Thus, (20) satis-
fies.

(b) By lemma 6, there is a constant C > 0 and f̂n = fθ̂ ∈ Fn such that

∥f̂n − f0∥L2 ≤ C∥f0∥Bs
p,q([0,1]d)N

−s/d
n ≤ ϵn/4 (24)

∥f − f0∥2
n ≤ 4∥f − f0∥2

L2 (25)

for sufficiently large n almost surely. Let γ̂ and θ̂γ̂ be index and value of nonzero
components of θ̂ respectively. Let

Θ̃(L,W,S,B,a) = {θ̃ : θ ∈ Θ(L,W,S,B,a)} (26)

and Θ̃(γ̂; Ln,Wn,Sn,Bn,an) be a subset of parameter space Θ̃(Ln,Wn,Sn,Bn,an) con-
sists of parameters which have nonzero components at γ̂ only

4 of 6



Yongseok Hur
Theorem 3 of (Lee and Lee, 2022) 8th Feb 2023

and Fn(γ̂) = Φ̃(γ̂; Ln,Wn,Sn,Bn,an) ∩ UB(F ) be an uniformly bounded neural net-
work space generated by Θ̃(γ̂; Ln,Wn,Sn,Bn,an). Then,

Π(Aϵn,1 = Π(f ∈ F : ∥f − f0∥n ≤ ϵn)
≥Π(Aϵn,1 = Π(f ∈ F : ∥f − f0∥L2 ≤ ϵn/2)
≥Π(Aϵn,1 = Π(f ∈ F : ∥f − f̂n∥L2 + ∥f̂n − f0∥L2 ≤ ϵn/2)
≥Π(Aϵn,1 = Π(f ∈ F : ∥f − f̂n∥L2 ≤ ϵn/4, ∥f̂n − f0∥L2 ≤ ϵn/4)
=Π(f ∈ F : ∥f − f̂n∥L2 ≤ ϵn/4)
≥Π(f ∈ F : ∥f − f̂n∥L∞ ≤ ϵn/4)
≥Π(f ∈ Fn(γ̂) : ∥f − f̂n∥L∞ ≤ ϵn/4)

(27)

We use (25) for the first inequality, and triangular inequality for the second inequa-
lity. The first equality comes from (24). The following inequalities is satisfied by
previous lemma (13), and prior constraint (16), (17), (18), (19).

Π(f ∈ Fn(γ̂) : ∥f − f̂n∥L∞ ≤ ϵn/4)
≥Π(θ ∈ RTn : θγ̂c ∈ [−an,an]Tn−Sn ,∥θγ̂∥∞ ≤ Bn,

∥θ̂γ̂ − θγ̂∥∞ ≤ ϵn

4(Wn + 1)LnLn(Bn ∨ 1)Ln−1 )

≥uTn−Sn
n (

∫ Bn

Bn−tn

g(t)dt)Sn

(28)

where tn = ϵn

4(Wn + 1)LnLn(Bn ∨ 1)Ln−1 . Letting

yn =
∫ Bn

Bn−tn
g(t)dt ≥ tng(Bn) (29)

, we can induce following inequalities. (29) is true since g decreases on [0,∞).

− log Π(Aϵn,1) ≤ − Sn log yn − (Tn − Sn) log un

≤ − Sn log(tng(Bn)) − Tn(1 − Sn/Tn) log(1 − Sn/Tn)
= − Sn log tn − Sn log g(Bn) + Tn(1 − Sn/Tn)(Sn/Tn + o(Sn/Tn))
≲Sn(log n)2 + Sn + o(Sn)
≲nϵ2

n

(30)
. The equality satisfies by Taylor expansion − log(1 − x) = x + o(x), for x =
Sn/Tn. Last inequality comes from (5). Thus, there exists a constant C1 such that
− log Π(Aϵn,1) ≤ C1nϵ2

n.

(c) since Fn has extra constraint of an (16), (17), (18), (19) generated by the shrinka-
ge prior, a function f in F − Fn should either have a parameter θi that |θi| > Bn,
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or have more than Sn parameters that the absolute value is bigger than an. Thus,

Π(F − Fn)

≤π(∃|θi| > Bn | Ln,Wn,Sn,Bn) + π(
Tn∑
i=1

I(|θi| > an) > Sn|Ln,Wn,Sn,Bn)

=(1 − (1 − vn)Tn) + P (S > Sn|S ∼ B(Tn,1 − un))

≤Tnvn + exp

(
−Tn

{
(1 − Sn/Tn) log 1 − Sn/Tn

un

+ Sn

Tn

log Sn/Tn

1 − un

})

=o(e−K0nϵ2
n+log Tn) + exp

(
Tn(1 − Sn/Tn) log un

1 − Sn/Tn

− Sn log Sn/Tn

1 − un

)

≤o(e−K1nϵ2
n) + exp

(
Tn(1 − Sn/Tn) log

(
1 − ηnSn/Tn

1 − Sn/Tn

+ o

(
(1 − ηn)Sn/Tn

1 − Sn/Tn

))
− Knϵ2

n

)
=o(e−K1nϵ2

n) + o(e−K2nϵ2
n)

=o(e− min{K1,K2}nϵ2
n)

(31)
for some 4 < K1 < K0 and 4 < K2 < K. The second inequality uses Bernouli
inequality and lemma about tailbound of binomial distribution (14). The last inequa-
lity satisfies since the scale of Tn is determined by (5), and Taylor expansion. Let
C2 = (min{K1,K2} − 2)/σ2.

Let C ′′ := min{C1,C2}, to cover both the case (b), (c), and we can say the three
condition (20), (21), (22) is satisfied.

Thus, theorem 3 is proved.

Conclusion
In theorem 3, shrinkage prior is introduced instead to deal with unsuitable com-
putational cost of implementing spike-and-slab prior, preserving the asymptotic
properties within the posterior distribution. We can catch the insight that we can
substitute the prior with any prior that has several advantages, though the prior
should satisfy strict tail conditions. The key difference to show contraction rate of
posterior distribution via new prior was in lemma 3 (or lemma 2) in (Lee and Lee,
2022). Also, determining lower, upper bound of tail distribution led to the conditions
((7),(8) respectively) from the lemma. We can expect to get more decent conditions
to prior by inducing tighter bounds for inequalities, though in larger perspective,
the limitation of dimension-depended contraction rate of posterior distribution still
exists.
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