이 정리는 Lemma1의 세 가지 조건 중 첫 번째 조건이 성립함을 보이는 정리이다. 증명에 앞서 각각의 용어들에 대해 정의하자. D ( ϵ n , P n , d ) D(\epsilon _ n,P _ n,d)D ( ϵ n , P n , d ) 은 P n P _ nP n 안에서, 각각의 쌍이 이루는 거리들의 거리가 ϵ n \epsilon _ nϵ n 보다 크거나 같은 점들의 최대 개수로 정의한다. 또한,
P n = { f Σ : ∣ s ( Σ , δ n ) ∣ ≤ s n , ζ − 1 ≤ λ m i n ( Σ ) ≤ λ m a x ( Σ ) ≤ ζ , ∣ ∣ Σ ∣ ∣ m a x ≤ L n } P _ n=\{f _ \Sigma \ :\ |s(\Sigma,\delta _ n)|\leq s _ n, \ \zeta^{-1} \leq \lambda _ {min}(\Sigma) \leq \lambda _ {max}(\Sigma) \leq \zeta,||\Sigma|| _ {max} \leq L _ n \}
P n = { f Σ : ∣ s ( Σ , δ n ) ∣ ≤ s n , ζ − 1 ≤ λ min ( Σ ) ≤ λ ma x ( Σ ) ≤ ζ , ∣∣Σ∣ ∣ ma x ≤ L n }
U ( δ n , s n , L n , ζ ) = { Σ ∈ c p : ∣ s ( Σ , δ n ) ∣ ≤ s n , ζ − 1 ≤ λ m i n ( Σ ) ≤ λ m a x ( Σ ) ≤ ζ , ∣ ∣ Σ ∣ ∣ m a x ≤ L n } \mathcal{U}(\delta _ n,s _ n,L _ n,\zeta)=\{\Sigma \in \mathcal{c} _ p : |s(\Sigma,\delta _ n)|\leq s _ n,\zeta^{-1} \leq \lambda _ {min}(\Sigma) \leq \lambda _ {max} (\Sigma) \leq \zeta,||\Sigma|| _ {max} \leq L _ n \}
U ( δ n , s n , L n , ζ ) = { Σ ∈ c p : ∣ s ( Σ , δ n ) ∣ ≤ s n , ζ − 1 ≤ λ min ( Σ ) ≤ λ ma x ( Σ ) ≤ ζ , ∣∣Σ∣ ∣ ma x ≤ L n }
s 0 s _ 0s 0 : 공분산 행렬의 비대각 원소 중 0이 아닌 원소들의 상한
ϵ n { ( p + s 0 ) l n p n } 1 2 \epsilon _ n \overset{\text{\tiny def}}{=} \{\frac{(p+s _ 0)lnp}{n}\}^{\frac{1}{2}}
ϵ n = def { n ( p + s 0 ) l n p } 2 1
라고 정의하자. 최종적으로는, l n D ( ϵ n , P n , d ) ≤ ( 12 + 1 / β ) c 1 n ϵ n 2 lnD(\epsilon _ n,\mathcal{P} _ n,d)\ \leq \ (12+1/\beta)c _ 1n\epsilon _ n^2l n D ( ϵ n , P n , d ) ≤ ( 12 + 1/ β ) c 1 n ϵ n 2 임을 보일 건데, 그 전에 먼저 lemma3 소개하자.
[Lemma3](Lemma A.1 in [6])
If P Ω k P _ {\Omega _ {k}}P Ω k is the density of N p ( 0 , Ω k − 1 ) N _ p(0,\Omega _ {k}^{-1})N p ( 0 , Ω k − 1 ) , k=1,2, then for all Ω k ∈ μ 0 + \Omega _ k \in \mu _ {0}^+Ω k ∈ μ 0 + , k=1,2, and d i d _ id i , i=1,2,…,p, eigenvalues of A = Σ 1 − 1 / 2 Σ 2 Σ 1 − 1 / 2 A=\Sigma _ 1^{-1/2}\Sigma _ 2\Sigma _ 1^{-1/2}A = Σ 1 − 1/2 Σ 2 Σ 1 − 1/2 , we have that for some δ > 0 \delta > 0δ > 0 and constant c o > 0 c _ o>0c o > 0 ,
c 0 − 1 ∣ ∣ Σ 1 − Σ 2 ∣ ∣ 2 2 ≤ ∑ i = 1 p ∣ d i − 1 ∣ 2 ≤ c o ∣ ∣ Σ 1 − Σ 2 ∣ ∣ 2 2 c _ 0^{-1}||\Sigma _ 1-\Sigma _ 2|| _ 2^2\leq \sum _ {i=1}^{p}|d _ i-1|^2\leq c _ o||\Sigma _ 1-\Sigma _ 2|| _ 2^2c 0 − 1 ∣∣ Σ 1 − Σ 2 ∣ ∣ 2 2 ≤ ∑ i = 1 p ∣ d i − 1 ∣ 2 ≤ c o ∣∣ Σ 1 − Σ 2 ∣ ∣ 2 2
h ( p Ω 1 , p Ω 2 ) < δ h(p _ {\Omega _ {1}},p _ {\Omega _ {2}})<\deltah ( p Ω 1 , p Ω 2 ) < δ implies max i ∣ d i − 1 ∣ < 1 \max\limits _ i|d _ i-1|<1i max ∣ d i − 1∣ < 1 and ∣ ∣ Ω 1 − Ω 2 ∣ ∣ 2 ≤ c o h 2 ( p Ω 1 , p Ω 2 ) ||\Omega _ 1-\Omega _ 2|| _ 2 \leq c _ oh^2(p _ {\Omega _ {1}},p _ {\Omega _ {2}})∣∣ Ω 1 − Ω 2 ∣ ∣ 2 ≤ c o h 2 ( p Ω 1 , p Ω 2 )
h 2 ( p Ω 1 , p Ω 2 ) ≤ c o ∣ ∣ Ω 1 − Ω 2 ∣ ∣ 2 2 h^2(p _ {\Omega _ {1}},p _ {\Omega _ {2}}) \leq c _ o||\Omega _ 1-\Omega _ 2|| _ 2^2h 2 ( p Ω 1 , p Ω 2 ) ≤ c o ∣∣ Ω 1 − Ω 2 ∣ ∣ 2 2
여기서, h ( ) h()h ( ) 는 hellinger distance 로, 우리 논문에서 d ( ) d()d ( ) 와 같음
따라서, lemma3-(3)에 의해,
d ( f Σ 1 , f Σ 2 ) ≤ c ζ ∣ ∣ Ω 1 − Ω 2 ∣ ∣ F d(f _ {\Sigma _ 1},f _ {\Sigma _ 2}) \leq c\zeta||\Omega _ 1-\Omega _ 2|| _ Fd ( f Σ 1 , f Σ 2 ) ≤ c ζ ∣∣ Ω 1 − Ω 2 ∣ ∣ F 임을 알 수 있고, 여기서 Ω \OmegaΩ 는 Σ − 1 \Sigma^{-1}Σ − 1 이다.
위 lemma3-(3)과 우리 논문의 lemma5를 통해, Ω 1 = Σ 1 − 1 Σ 1 Σ 1 − 1 \Omega _ 1=\Sigma _ 1^{-1}\Sigma _ 1\Sigma _ 1^{-1}Ω 1 = Σ 1 − 1 Σ 1 Σ 1 − 1 임을 이용하면,
d ( f Σ 1 , f Σ 2 ) ≤ C ζ 3 ∣ ∣ Σ 1 − Σ 2 ∣ ∣ F d(f _ {\Sigma _ 1},f _ {\Sigma _ 2}) \leq C\zeta^3||\Sigma _ 1-\Sigma _ 2|| _ Fd ( f Σ 1 , f Σ 2 ) ≤ C ζ 3 ∣∣ Σ 1 − Σ 2 ∣ ∣ F (1) 식을 얻을 수 있다.
ϵ \epsilonϵ -packing의 정의에 의해, d ( f Σ i , f Σ j ) ≥ ϵ n d(f _ {\Sigma _ {i}},f _ {\Sigma _ {j}})\geq \epsilon _ nd ( f Σ i , f Σ j ) ≥ ϵ n 으로부터, (1) 식과 결합하여, ∣ ∣ Σ 1 − Σ 2 ∣ ∣ F ≥ ϵ n C ζ 3 ||\Sigma _ 1-\Sigma _ 2|| _ F \geq \frac{\epsilon _ n}{C\zeta^3}∣∣ Σ 1 − Σ 2 ∣ ∣ F ≥ C ζ 3 ϵ n 의 결과를 얻을 수 있다. 따라서, 집합을 P n \mathcal{P} _ nP n 에서, U ( δ n , s n , L n , ζ ) \mathcal{U}(\delta _ n,s _ n,L _ n,\zeta)U ( δ n , s n , L n , ζ ) 으로 바꾸고, 거리를 Frobenius norm 으로 바꾸어서 위의 결과를 적용하자. 여기서 격자 개념을 생각해보면, 격자의 대각선 부분들까지 고려해주어야 한다. 따라서,
l n D ( ϵ n , P n , d ) ≤ l n D ( ϵ n C ζ 3 , U ( δ n , s n , L n , ζ ) , ∣ ∣ ⋅ ∣ ∣ F ) ≤ l n { ( L n p + j ϵ n C ζ 3 ) p ∑ j = 1 s n ( p + j 1 2 L n ϵ n C ζ 3 ) j ( p 2 j ) } lnD(\epsilon _ n,P _ n,d) \leq lnD(\frac{\epsilon _ n}{C\zeta^3},\mathcal{U}(\delta _ n,s _ n,L _ n,\zeta),||\cdot|| _ F)
\leq ln\left\{\left(\frac{L _ n\sqrt{p+j}}{\frac{\epsilon _ n}{C\zeta^3}}\right)^p \displaystyle \sum\limits _ {j=1}^{s _ n}\left(\frac{\sqrt{p+j}\frac{1}{\sqrt{2}}L _ n}{\frac{\epsilon _ n}{C\zeta^3}}\right)^{j}{\frac{p}{2} \displaystyle \choose j} \right\}l n D ( ϵ n , P n , d ) ≤ l n D ( C ζ 3 ϵ n , U ( δ n , s n , L n , ζ ) , ∣∣ ⋅ ∣ ∣ F ) ≤ l n ⎩ ⎨ ⎧ ( C ζ 3 ϵ n L n p + j ) p j = 1 ∑ s n ( C ζ 3 ϵ n p + j 2 1 L n ) j ( j 2 p ) ⎭ ⎬ ⎫
여기서, p + j \sqrt{p+j}p + j 는 격자의 대각선을 고려해준 항이고, 1 2 \frac{1}{\sqrt{2}}2 1 는 Frobenius norm에서, symmetric term들의 중복을 고려해 준 값이다.
한편, ( L n p + j ϵ n C ζ 3 ) \left(\frac{L _ n\sqrt{p+j}}{\frac{\epsilon _ n}{C\zeta^3}}\right)( C ζ 3 ϵ n L n p + j ) 에서 j ≤ s n ≤ p 2 j\leq s _ n \leq p^2j ≤ s n ≤ p 2 임을 통해, j를 p에 대한 부등식으로 적절히 바꾸어주면,
L n p + j ϵ n C ζ 3 ≤ 2 p ζ 3 L n ϵ n \frac{L _ n\sqrt{p+j}}{\frac{\epsilon _ n}{C\zeta^3}}\leq \frac{2p\zeta^3L _ n}{\epsilon _ n}C ζ 3 ϵ n L n p + j ≤ ϵ n 2 p ζ 3 L n 을 얻을 수 있다.
따라서,
l n { ( L n p + j ϵ n C ζ 3 ) p ∑ j = 1 s n ( p + j 1 2 L n ϵ n C ζ 3 ) j ( p 2 j ) } = l n { ( 2 p C ζ 3 L n ϵ n ) p ∑ j = 1 s n ( 2 C ζ 3 L n p ϵ n ) j ( p 2 j ) } = l n [ ( ( 2 p ) p ( 2 p ) s n ) ( C ζ 3 L n ϵ n ) p ∑ j = 1 s n ( C ζ 3 L n ϵ n ) j ( p 2 j ) ] = p l n 2 + p l n p + s n ( 1 2 l n 2 + l n p ) + p l n ( C L n ζ 3 ϵ n ) + l n ( ∑ j = 1 s n ( 2 C L n ζ 3 ϵ n ) ( p 2 2 ) j ) ≤ p l n 2 + p l n p + s n ( 1 2 l n 2 + l n p ) + p l n ( C L n ζ 3 ϵ n ) + s n l n ( 2 C L n ζ 3 p 2 ϵ n ) ≤ p l n 2 + p l n p + 1 2 s n l n 2 + s n l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n 1 ϵ n + 2 s n l n p \begin{gathered}
ln\left\{\left(\frac{L _ n\sqrt{p+j}}{\frac{\epsilon _ n}{C\zeta^3}}\right)^p \displaystyle \sum\limits _ {j=1}^{s _ n}\left(\frac{\sqrt{p+j}\frac{1}{\sqrt{2}}L _ n}{\frac{\epsilon _ n}{C\zeta^3}}\right)^{j}{\frac{p}{2} \choose j} \right \} \\
=ln\left\{\left(\frac{2pC\zeta^3L _ n}{\epsilon _ n}\right)^p \displaystyle \sum\limits _ {j=1}^{s _ n}\left(\frac{\sqrt{2}C\zeta^3L _ np}{\epsilon _ n}\right)^j{\frac{p}{2} \choose j}\right\} \\
= ln\left[((2p)^p(\sqrt{2}p)^{s _ n})\left(\frac{C\zeta^3L _ n}{\epsilon _ n}\right)^p \displaystyle \sum\limits _ {j=1}^{s _ n} \left(\frac{C\zeta^3L _ n}{\epsilon _ n}\right)^j{\frac{p}{2} \choose j}\right] \\
= pln2+plnp+s _ n(\frac{1}{2}ln2+lnp)+pln\left(\frac{CL _ n\zeta^3}{\epsilon _ n}\right)+ln\left( \displaystyle \sum\limits _ {j=1}^{s _ {n}}\left(\frac{2CL _ n\zeta^3}{\epsilon _ n}\right)(\frac{p^2}{2})^j\right) \\
\leq pln2+plnp+s _ n(\frac{1}{2}ln2+lnp)+pln\left(\frac{CL _ n\zeta^3}{\epsilon _ n}\right)+s _ {n}ln\left(\frac{2CL _ n\zeta^3p^2}{\epsilon _ n}\right) \\
\leq pln2+plnp+\frac{1}{2}s _ nln2+s _ nlnp+(p+s _ n)ln(2CL _ n)+(p+s _ n)ln\zeta^3+(p+s _ n)ln\frac{1}{\epsilon _ n}+2s _ nlnp
\end{gathered}
l n ⎩ ⎨ ⎧ ( C ζ 3 ϵ n L n p + j ) p j = 1 ∑ s n ( C ζ 3 ϵ n p + j 2 1 L n ) j ( j 2 p ) ⎭ ⎬ ⎫ = l n ⎩ ⎨ ⎧ ( ϵ n 2 pC ζ 3 L n ) p j = 1 ∑ s n ( ϵ n 2 C ζ 3 L n p ) j ( j 2 p ) ⎭ ⎬ ⎫ = l n [ (( 2 p ) p ( 2 p ) s n ) ( ϵ n C ζ 3 L n ) p j = 1 ∑ s n ( ϵ n C ζ 3 L n ) j ( j 2 p ) ] = pl n 2 + pl n p + s n ( 2 1 l n 2 + l n p ) + pl n ( ϵ n C L n ζ 3 ) + l n ( j = 1 ∑ s n ( ϵ n 2 C L n ζ 3 ) ( 2 p 2 ) j ) ≤ pl n 2 + pl n p + s n ( 2 1 l n 2 + l n p ) + pl n ( ϵ n C L n ζ 3 ) + s n l n ( ϵ n 2 C L n ζ 3 p 2 ) ≤ pl n 2 + pl n p + 2 1 s n l n 2 + s n l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n ϵ n 1 + 2 s n l n p
에서 적절한 상수를 곱해주면,
≤ 2 ( p + s n ) l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n 1 ϵ n + 2 s n l n p \leq 2(p+s _ n)lnp+(p+s _ n)ln(2CL _ n)+(p+s _ n)ln\zeta^3+(p+s _ n)ln\frac{1}{\epsilon _ n}+2s _ nlnp
≤ 2 ( p + s n ) l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n ϵ n 1 + 2 s n l n p
이다. 먼저, ( p + s n ) l n ( 2 C L n ) ≤ 6 s n l n p (p+s _ n)ln(2CL _ n)\leq 6s _ nlnp( p + s n ) l n ( 2 C L n ) ≤ 6 s n l n p 임을 보일건데,
위에서 정의한 s n , ϵ n , L n s _ n,\epsilon _ n,L _ ns n , ϵ n , L n 을 통해, s n = c 1 ( p + s 0 ) s _ n=c _ 1(p+s _ 0)s n = c 1 ( p + s 0 ) 이므로, p + s n = ( 1 + c 1 ) p + c 1 s 0 p+s _ n=(1+c _ 1)p+c _ 1s _ 0p + s n = ( 1 + c 1 ) p + c 1 s 0 임을 알 수 있다. 또한, 2 C L n = 2 c 2 n ϵ n 2 2CL _ n=2c _ 2n\epsilon _ n^22 C L n = 2 c 2 n ϵ n 2 이다.
이를 좌변에 대입하면,
( p + s n ) l n ( 2 C L n ) = ( ( c 1 + 1 ) + c 1 s 0 ) l n 2 c 2 n ϵ n 2 = ( ( c 1 + 1 ) p + c 1 s 0 ) l n 2 c 2 ( p + s 0 ) l n p \begin{gathered}
(p+s _ n)ln(2CL _ n)=((c _ 1+1)+c _ 1s _ 0)ln2c _ 2n\epsilon _ n^2 \\
=((c _ 1+1)p+c _ 1s _ 0)ln2c _ 2(p+s _ 0)lnp
\end{gathered}
( p + s n ) l n ( 2 C L n ) = (( c 1 + 1 ) + c 1 s 0 ) l n 2 c 2 n ϵ n 2 = (( c 1 + 1 ) p + c 1 s 0 ) l n 2 c 2 ( p + s 0 ) l n p
이다. c 1 > 1 c _ 1 > 1c 1 > 1 가정에 의해,
( ( c 1 + 1 ) + c 1 s 0 ) l n 2 c 2 n ϵ n 2 ≤ 2 c 1 ( p + s 0 ) l n ( 2 c 2 ( p + s 0 ) l n p ) ((c _ 1+1)+c _ 1s _ 0)ln2c _ 2n\epsilon _ n^2\leq 2c _ 1(p+s _ 0)ln(2c _ 2(p+s _ 0)lnp)
(( c 1 + 1 ) + c 1 s 0 ) l n 2 c 2 n ϵ n 2 ≤ 2 c 1 ( p + s 0 ) l n ( 2 c 2 ( p + s 0 ) l n p )
이다. 한편, s 0 s _ 0s 0 는 비대각 원소 중 0이 아닌 것들의 개수의 상한이므로 s o ≤ p 2 s _ o\leq p^2s o ≤ p 2 임을 알 수 있다.
따라서, 적절한 차수 p 3 p^3p 3 을 통해 2 c 2 ( p + s 0 ) l n p < p 3 2c _ 2(p+s _ 0)lnp<p ^ 32 c 2 ( p + s 0 ) l n p < p 3 을 얻을 수 있다. 이를 통해,
( p + s n ) l n ( 2 C L n ) ≤ 2 c 1 ( p + s 0 ) l n p 3 = 6 s n l n p (p+s _ n)ln(2CL _ n)\leq 2c _ 1(p+s _ 0)lnp^3=6s _ nlnp
( p + s n ) l n ( 2 C L n ) ≤ 2 c 1 ( p + s 0 ) l n p 3 = 6 s n l n p
부등식을 얻을 수 있다.
이를 정리하면,
2 ( p + s n ) l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n 1 ϵ n + 2 s n l n p ≤ 2 ( p + s n ) l n p + 6 s n l n p + ( p + s 0 ) l n ζ 3 + ( p + s n ) l n ( 1 ϵ n ) + 2 s n l n p \begin{gathered}
2(p+s _ n)lnp+(p+s _ n)ln(2CL _ n)+(p+s _ n)ln\zeta^3+(p+s _ n)ln\frac{1}{\epsilon _ n}+2s _ nlnp \\
\leq 2(p+s _ n)lnp+6s _ nlnp+(p+s _ 0)ln\zeta^3+(p+s _ n)ln(\frac{1}{\epsilon _ n})+2s _ nlnp
\end{gathered}
2 ( p + s n ) l n p + ( p + s n ) l n ( 2 C L n ) + ( p + s n ) l n ζ 3 + ( p + s n ) l n ϵ n 1 + 2 s n l n p ≤ 2 ( p + s n ) l n p + 6 s n l n p + ( p + s 0 ) l n ζ 3 + ( p + s n ) l n ( ϵ n 1 ) + 2 s n l n p
이다. 이제 ( p + s 0 ) l n ζ 3 ≤ 3 4 ( p + s n ) l n p (p+s _ 0)ln\zeta^3\leq \frac{3}{4}(p+s _ n)lnp( p + s 0 ) l n ζ 3 ≤ 4 3 ( p + s n ) l n p 임을 보이자.
( p + s n ) l n ζ 3 = 3 4 ( p + s n ) l n ζ 4 (p+s _ n)ln\zeta^3=\frac{3}{4}(p+s _ n)ln\zeta^4
( p + s n ) l n ζ 3 = 4 3 ( p + s n ) l n ζ 4
인데, 가정에 의해, ζ 4 ≤ p \zeta^4\leq pζ 4 ≤ p 이므로,
( p + s n ) l n ζ 3 ≤ 3 4 ( p + s n ) l n p (p+s _ n)ln\zeta^3\leq \frac{3}{4}(p+s _ n)lnp
( p + s n ) l n ζ 3 ≤ 4 3 ( p + s n ) l n p
임을 알 수 있다. 이를 대입하여 정리하면,
≤ 2 ( p + s n ) l n p + 6 s n l n p + ( p + s 0 ) l n ζ 3 + ( p + s n ) l n ( 1 ϵ n ) + 2 s n l n p ≤ 2 ( p + s n ) l n p + 6 s n l n p + 3 4 ( p + s n ) l n p + ( p + s n ) l n ( 1 ϵ n ) + 2 s n l n p \begin{gathered}
\leq 2(p+s _ n)lnp+6s _ nlnp+(p+s _ 0)ln\zeta^3+(p+s _ n)ln(\frac{1}{\epsilon _ n})+2s _ nlnp \\
\leq 2(p+s _ n)lnp+6s _ nlnp+\frac{3}{4}(p+s _ n)lnp+(p+s _ n)ln(\frac{1}{\epsilon _ n})+2s _ nlnp
\end{gathered}
≤ 2 ( p + s n ) l n p + 6 s n l n p + ( p + s 0 ) l n ζ 3 + ( p + s n ) l n ( ϵ n 1 ) + 2 s n l n p ≤ 2 ( p + s n ) l n p + 6 s n l n p + 4 3 ( p + s n ) l n p + ( p + s n ) l n ( ϵ n 1 ) + 2 s n l n p
이다.
세번째 항에, 앞에서 정의한 ϵ n \epsilon _ nϵ n 을 대입하여 정리하면,
( p + s n ) l n ( 1 ϵ n ) = 1 2 ( p + s n ) l n n ( p + s o ) l n p (p+s _ n)ln(\frac{1}{\epsilon _ n})=\frac{1}{2}(p+s _ n)ln\frac{n}{(p+s _ o)lnp}
( p + s n ) l n ( ϵ n 1 ) = 2 1 ( p + s n ) l n ( p + s o ) l n p n
임을 알 수 있고,
우변
= 1 2 β ( p + s n ) l n ( n ( p + s o ) l n p ) β = 1 2 β ( p + s n ) l n n β − 1 2 ( p + s n ) l n ( p + s 0 ) l n p ≤ 1 2 β ( p + s n ) l n n β = 1 2 β ( p + s n ) l n p \begin{gathered}
= \frac{1}{2\beta}(p+s _ n)ln\left(\frac{n}{(p+s _ o)lnp}\right)^\beta \\
=\frac{1}{2\beta}(p+s _ n)lnn^\beta-\frac{1}{2}(p+s _ n)ln(p+s _ 0)lnp \\
\leq \frac{1}{2\beta}(p+s _ n)lnn^\beta=\frac{1}{2\beta}(p+s _ n)lnp
\end{gathered}
= 2 β 1 ( p + s n ) l n ( ( p + s o ) l n p n ) β = 2 β 1 ( p + s n ) l n n β − 2 1 ( p + s n ) l n ( p + s 0 ) l n p ≤ 2 β 1 ( p + s n ) l n n β = 2 β 1 ( p + s n ) l n p
이다.(∵ p ≍ n β \because p\asymp n^\beta∵ p ≍ n β )
이를 다시 처음 부등식에서 정리하면,
≤ 2 ( p + s n ) l n p + 6 s n l n p + 3 4 ( p + s n ) l n p + 1 2 β ( p + s n ) l n p + 2 s n l n p \leq 2(p+s _ n)lnp+6s_n lnp+\frac{3}{4}(p+s _ n)lnp+\frac{1}{2\beta}(p+s _ n)lnp+2s _ nlnp
≤ 2 ( p + s n ) l n p + 6 s n l n p + 4 3 ( p + s n ) l n p + 2 β 1 ( p + s n ) l n p + 2 s n l n p
이다.
이 부등식에 적절한 상수배를 해주면,
≤ 6 s n l n p + 11 4 ( p + s n ) l n p + 1 2 β ( p + s n ) l n p + 2 s n l n p ( 6 + 1 2 β ) ( s n c 1 + s n ) l n p < 1 2 ( 12 + 1 β ) ( c 1 + c 1 ) n ϵ n 2 ( ∵ c 1 > 1 ) = ( 12 + 1 2 β ) c 1 n ϵ n 2 \begin{gathered}
\leq 6s _ nlnp+\frac{11}{4}(p+s _ n)lnp+\frac{1}{2\beta}(p+s _ n)lnp+2s _ nlnp \\
(6+\frac{1}{2\beta})(\frac{s _ n}{c _ 1}+s _ n)lnp< \frac{1}{2}(12+\frac{1}{\beta})(c _ 1+c _ 1)n\epsilon _ n^2 \quad (\because c _ 1>1) \\
=(12+\frac{1}{2\beta})c _ 1n\epsilon _ n^2
\end{gathered}
≤ 6 s n l n p + 4 11 ( p + s n ) l n p + 2 β 1 ( p + s n ) l n p + 2 s n l n p ( 6 + 2 β 1 ) ( c 1 s n + s n ) l n p < 2 1 ( 12 + β 1 ) ( c 1 + c 1 ) n ϵ n 2 ( ∵ c 1 > 1 ) = ( 12 + 2 β 1 ) c 1 n ϵ n 2
이다. 따라서,
l n D ( ϵ n , P n , d ) ≤ ( 12 + 1 β ) c 1 n ϵ n 2 ln D(\epsilon_n, P_n, d) \leq (12 + \frac{1}{\beta} ) c_1 n \epsilon_n^2
l n D ( ϵ n , P n , d ) ≤ ( 12 + β 1 ) c 1 n ϵ n 2
이 성립해서,
이를 통해 Lemma1의 첫 번째 조건이 성립함을 알 수 있다.
이 Lemma는 논문의 Theorem4 의 증명에서 활용되는 Lemma이다.
Gershgorin circle Thm에 의해, covariance matrix의 eigenvalue 들은 적어도 [ σ j j − ∑ k ≠ j ∣ σ k j ∣ , σ j j + ∑ k ≠ j ∣ σ k j ∣ ] , j ∈ { 1 , 2 , ⋯ , p } [\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|,\sigma _ {jj}+\sum\limits _ {k\neq j}|\sigma _ {kj}|], j \in \{1,2,\cdots,p\}[ σ jj − k = j ∑ ∣ σ kj ∣ , σ jj + k = j ∑ ∣ σ kj ∣ ] , j ∈ { 1 , 2 , ⋯ , p } 안에 있다는 것을 알 수 있다. 따라서,
π u ( Σ ∈ U ( ζ ) ) ≥ π u ( m i n j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) > 0 , ζ − 1 ≤ λ m i n ( Σ ) ≤ λ m a x ( Σ ) ≤ ζ ) \begin{gathered}
\pi^u(\Sigma \in \mathcal{U}(\zeta)) \\
\geq \pi^u(min _ j(\sigma _ {jj}-\sum _ {k\neq j}|\sigma _ {kj}|)>0,\zeta^{-1} \leq \lambda _ {min}(\Sigma)\leq \lambda _ {max}(\Sigma)\leq \zeta)
\end{gathered}
π u ( Σ ∈ U ( ζ )) ≥ π u ( mi n j ( σ jj − k = j ∑ ∣ σ kj ∣ ) > 0 , ζ − 1 ≤ λ min ( Σ ) ≤ λ ma x ( Σ ) ≤ ζ )
임을 보이면 된다. 먼저 min j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) > 0 \min\limits _ {j}(\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|)>0j min ( σ jj − k = j ∑ ∣ σ kj ∣ ) > 0 을 살펴보면, 1-norm의 정의에 의해,
∣ ∣ Σ ∣ ∣ 1 = max 1 ≤ j ≤ n ∑ i = 1 m ∣ a i j ∣ ||\Sigma|| _ 1 = \max\limits _ {1\leq j\leq n} \sum\limits _ {i=1}^{m}|a _ {ij}|∣∣Σ∣ ∣ 1 = 1 ≤ j ≤ n max i = 1 ∑ m ∣ a ij ∣ \ 이므로,
λ m a x ( Σ ) ≤ ∣ ∣ Σ ∣ ∣ 1 = max j ( σ j j + ∑ k ≠ j ∣ σ k j ∣ ) ≤ max j 2 σ j j \lambda _ {max}(\Sigma) \leq ||\Sigma|| _ 1 = \max\limits _ {j}(\sigma _ {jj}+\sum\limits _ {k\neq j}|\sigma _ {kj}|)\leq \max\limits _ {j}2\sigma _ {jj}
λ ma x ( Σ ) ≤ ∣∣Σ∣ ∣ 1 = j max ( σ jj + k = j ∑ ∣ σ kj ∣ ) ≤ j max 2 σ jj
로 표현할 수 있다. 또한, G.C Thm에 의해,
λ m i n ( Σ ) ≥ min j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) \lambda _ {min}(\Sigma)\geq \min\limits _ {j}(\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|)
λ min ( Σ ) ≥ j min ( σ jj − k = j ∑ ∣ σ kj ∣ )
로 표현할 수 있다. 따라서,
이를 위의 식 ζ − 1 ≤ λ m i n ( Σ ) ≤ λ m a x ( Σ ) ≤ ζ \zeta^{-1} \leq \lambda _ {min}(\Sigma)\leq \lambda _ {max}(\Sigma)\leq \zetaζ − 1 ≤ λ min ( Σ ) ≤ λ ma x ( Σ ) ≤ ζ 에 적용해서 다시 표현하면,
π u ( Σ ∈ U ( ζ ) ) ≥ π u ( ζ − 1 ≤ min j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) ≤ 2 max j σ j j ≤ ζ ) \pi^u(\Sigma \in \mathcal{U}(\zeta)) \geq \pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|)\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta)
π u ( Σ ∈ U ( ζ )) ≥ π u ( ζ − 1 ≤ j min ( σ jj − k = j ∑ ∣ σ kj ∣ ) ≤ 2 j max σ jj ≤ ζ )
이고, P ( A ) ≥ P ( A ∩ B ) = P ( A ∣ B ) P ( B ) P(A)\geq P(A \cap B)=P(A|B)P(B)P ( A ) ≥ P ( A ∩ B ) = P ( A ∣ B ) P ( B ) 성질을 이용하면,
π u ( ζ − 1 ≤ min j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) ≤ 2 max j σ j j ≤ ζ ) ≥ π u ( ζ − 1 ≤ min j ( σ j j − ∑ k ≠ j ∣ σ k j ∣ ) ≤ 2 max j σ j j ≤ ζ ∣ max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) \begin{gathered}
\pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|)\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta) \\
\geq \pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\sum\limits _ {k\neq j}|\sigma _ {kj}|)\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta \ | \max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1} )\pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})
\end{gathered}
π u ( ζ − 1 ≤ j min ( σ jj − k = j ∑ ∣ σ kj ∣ ) ≤ 2 j max σ jj ≤ ζ ) ≥ π u ( ζ − 1 ≤ j min ( σ jj − k = j ∑ ∣ σ kj ∣ ) ≤ 2 j max σ jj ≤ ζ ∣ k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 )
인데, 조건부에 의해 다음 부등식이 되고,
≥ π u ( ζ − 1 ≤ min j ( σ j j − ζ − 1 ) ≤ 2 max j σ j j ≤ ζ ∣ max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) \geq \pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\zeta^{-1})\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta \ | \max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1} )\pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})
≥ π u ( ζ − 1 ≤ j min ( σ jj − ζ − 1 ) ≤ 2 j max σ jj ≤ ζ ∣ k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 )
에서, σ j j \sigma _ {jj}σ jj 항과 σ i j \sigma _ {ij}σ ij 는 독립이므로 조건부 항을 없앨 수 있다. 따라서,
= π u ( ζ − 1 ≤ min j ( σ j j − ζ − 1 ) ≤ 2 max j σ j j ≤ ζ ) π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) =\pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\zeta^{-1})\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta)\pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})
= π u ( ζ − 1 ≤ j min ( σ jj − ζ − 1 ) ≤ 2 j max σ jj ≤ ζ ) π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 )
이다.
다시 정리해보면, 다음과 같은 부등식을 얻을 수 있다.
π u ( Σ ∈ U ( ζ ) ) ≥ π u ( ζ − 1 ≤ min j ( σ j j − ζ − 1 ) ≤ 2 max j σ j j ≤ ζ ) ‾ ∗ π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) ‾ \pi^u(\Sigma \in \mathcal{U}(\zeta)) \geq \underline{\pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\zeta^{-1})\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta)} \ * \ \underline{\pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})}
π u ( Σ ∈ U ( ζ )) ≥ π u ( ζ − 1 ≤ j min ( σ jj − ζ − 1 ) ≤ 2 j max σ jj ≤ ζ ) ∗ π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 )
먼저 첫 번째 밑줄 확률을 계산해보면,
π u ( ζ − 1 ≤ min j ( σ j j − ζ − 1 ) ≤ 2 max j σ j j ≤ ζ ) ≥ π u ( 2 ζ − 1 ≤ σ j j ≤ ζ 2 , ∀ j ) ≥ ∏ j = 1 p π u ( 2 ζ − 1 ≤ σ j j ≤ ζ 2 ) \begin{gathered}
\pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\zeta^{-1})\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta) \\
\geq \pi^u(2\zeta^{-1} \leq \sigma _ {jj} \leq \frac{\zeta}{2}, \forall j) \\
\geq \prod\limits _ {j=1}^p \pi^u(2\zeta^{-1}\leq \sigma _ {jj} \leq \frac{\zeta}{2})
\end{gathered}
π u ( ζ − 1 ≤ j min ( σ jj − ζ − 1 ) ≤ 2 j max σ jj ≤ ζ ) ≥ π u ( 2 ζ − 1 ≤ σ jj ≤ 2 ζ , ∀ j ) ≥ j = 1 ∏ p π u ( 2 ζ − 1 ≤ σ jj ≤ 2 ζ )
에서 σ j j \sigma _ {jj}σ jj 가 Γ ( 1 , λ 2 ) \Gamma(1,\frac{\lambda}{2})Γ ( 1 , 2 λ ) 를 따른다는 가정에 의해, f ( σ j j ) = λ 2 e x p ( − λ 2 σ j j ) f(\sigma _ {jj})=\frac{\lambda}{2}exp(-\frac{\lambda}{2}\sigma _ {jj})f ( σ jj ) = 2 λ e x p ( − 2 λ σ jj ) 의 pdf 를 갖고, 가로 길이가 ( 2 ζ , ζ 2 ) \left(\frac{2}{\zeta},\frac{\zeta}{2}\right)( ζ 2 , 2 ζ ) 이고 세로 길이가 ( 0 , f ( 2 ζ ) ) \left(0,f\left(\frac{2}{\zeta}\right)\right)( 0 , f ( ζ 2 ) ) 인 직사각형을 생각하면,
이는 pdf 의 전체 넓이 보다는 작으므로, 이를 통해
∏ j = 1 p π u ( 2 ζ − 1 ≤ σ j j ≤ ζ 2 ) = { ( ζ 2 − 2 ζ ) λ 2 e x p ( − λ ζ 4 ) } p ≥ { λ ζ 8 e x p ( − λ ζ 4 ) } p \begin{gathered}
\prod\limits _ {j=1}^p\pi^u(2\zeta^{-1}\leq \sigma _ {jj} \leq \frac{\zeta}{2}) \\
=\left\{\left(\frac{\zeta}{2}-\frac{2}{\zeta}\right)\frac{\lambda}{2}exp(-\frac{\lambda \zeta}{4})\right\}^p \geq \left\{ \frac{\lambda \zeta}{8} exp(-\frac{\lambda \zeta}{4})\right\}^p
\end{gathered}
j = 1 ∏ p π u ( 2 ζ − 1 ≤ σ jj ≤ 2 ζ ) = { ( 2 ζ − ζ 2 ) 2 λ e x p ( − 4 λ ζ ) } p ≥ { 8 λ ζ e x p ( − 4 λ ζ ) } p
임을 알 수 있다. 이제 두 번째 밑줄 확률인 π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) \pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) 를 계산할 건데, 먼저 이를 위한 lemma 하나를 소개하자.
[lemma 1 in [12]]
The univariate horseshoe density p ( θ ) p(\theta)p ( θ ) satisfies the following:
( a ) lim θ → 0 p ( θ ) = ∞ ( b ) F o r θ ≠ 0 , K 2 l o g ( 1 + 4 θ 2 ) < p ( θ ) < K l o g ( 1 + 2 θ 2 ) , w h e r e K = 1 2 π 3 \begin{aligned}
&(a) \lim\limits _ {\theta \rightarrow 0}p(\theta) = \infty\\
&(b) \ For\ \theta \neq 0, \frac{K}{2}log\left(1+\frac{4}{\theta^2}\right)<p(\theta)<Klog\left(1+\frac{2}{\theta^2}\right), \ where\ K=\frac{1}{\sqrt{2\pi^3}}
\end{aligned}
( a ) θ → 0 lim p ( θ ) = ∞ ( b ) F or θ = 0 , 2 K l o g ( 1 + θ 2 4 ) < p ( θ ) < K l o g ( 1 + θ 2 2 ) , w h ere K = 2 π 3 1
따라서, 위의 lemma\ (b) 를 통해, π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) \pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) 의 계산을 위한 부등식인
π u ( σ k j ) ≤ 1 τ 2 π 3 l n ( 1 + 2 τ 2 σ k j 2 ) \pi^u(\sigma _ {kj})\leq \frac{1}{\tau \sqrt{2\pi^3}}ln\left(1+\frac{2\tau^2}{\sigma _ {kj}^2}\right)
π u ( σ kj ) ≤ τ 2 π 3 1 l n ( 1 + σ kj 2 2 τ 2 )
를 알 수 있다. 한편, ∣ σ k j ∣ |\sigma _ {kj}|∣ σ kj ∣ 는 이대일 변환이므로, 2가 곱해져서,
π u ( ∣ σ k j ∣ ≥ ( ζ p ) − 1 ) ≤ 1 ζ 2 π 3 ∫ ( ζ p ) − 1 ∞ l n ( 1 + 2 τ 2 x 2 ) d x \pi^u(|\sigma _ {kj}|\geq(\zeta p)^{-1})\leq \frac{1}{\zeta}\sqrt{\frac{2}{\pi^3}} \displaystyle \int _ {(\zeta p)^{-1}}^{\infty}ln\left(1+\frac{2\tau^2}{x^2}\right) dx
π u ( ∣ σ kj ∣ ≥ ( ζp ) − 1 ) ≤ ζ 1 π 3 2 ∫ ( ζp ) − 1 ∞ l n ( 1 + x 2 2 τ 2 ) d x
가 되고,
≤ 2 π 3 ∫ ( ζ p ) − 1 ∞ 2 τ 2 x 2 d x ( ∵ l n ( 1 + x ) ≤ x , w h e n x ≥ 0 ) = 2 π 3 ∫ ( ζ p ) − 1 ∞ 2 τ x 2 d x = 2 2 π 3 τ ζ p \begin{gathered}
\leq \sqrt{\frac{2}{\pi^3}} \displaystyle \int _ {(\zeta p)^{-1}}^{\infty}\frac{2\tau^2}{x^2} dx \quad ( \because ln(1+x) \leq x, \ when\ x\geq 0) \\
= \sqrt{\frac{2}{\pi^3}} \displaystyle \int _ {(\zeta p)^{-1}}^{\infty}\frac{2\tau}{x^2} dx \\
=\frac{2\sqrt{2}}{\sqrt{\pi^3}}\tau\zeta p \\
\end{gathered}
≤ π 3 2 ∫ ( ζp ) − 1 ∞ x 2 2 τ 2 d x ( ∵ l n ( 1 + x ) ≤ x , w h e n x ≥ 0 ) = π 3 2 ∫ ( ζp ) − 1 ∞ x 2 2 τ d x = π 3 2 2 τ ζp
임을 알 수 있다. 이를 통해 이제 π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) \pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1})π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) 를 계산해보면,
π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) = ∏ k ≠ j { 1 − π u ( ∣ σ k j ∣ ≥ ( ζ p ) − 1 ) } = ( 1 − 2 2 π 3 τ ζ p ) p ( p − 1 ) ≥ ( 1 − 2 2 π 3 τ ζ p ) p 2 ( ∵ 괄호안의 값은확률로 1보다 작으므로 ) ≥ e x p ( − 4 2 π 3 τ ζ p 3 ) ( ∵ l o g ( 1 − x ) ≥ − 2 x , w h e n x ≤ 1 2 ) \begin{gathered}
\pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1}) = \prod\limits _ {k\neq j} \left\{ 1-\pi^u(|\sigma _ {kj}|\geq (\zeta p)^{-1}) \right\} \\
= \left(1-\frac{2\sqrt{2}}{\sqrt{\pi^3}}\tau\zeta p\right)^{p(p-1)} \\
\geq \left(1-\frac{2\sqrt{2}}{\sqrt{\pi^3}}\tau\zeta p\right)^{p^2} \quad (\because \text{괄호안의 값은확률로 1보다 작으므로}) \\
\geq exp\left(-\frac{4\sqrt{2}}{\sqrt{\pi^3}}\tau \zeta p^3\right) \ (\because log(1-x) \geq -2x,\ when\ x\leq \frac{1}{2})
\end{gathered}
π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) = k = j ∏ { 1 − π u ( ∣ σ kj ∣ ≥ ( ζp ) − 1 ) } = ( 1 − π 3 2 2 τ ζp ) p ( p − 1 ) ≥ ( 1 − π 3 2 2 τ ζp ) p 2 ( ∵ 괄호안의 값은확률로 1 보다 작으므로 ) ≥ e x p ( − π 3 4 2 τ ζ p 3 ) ( ∵ l o g ( 1 − x ) ≥ − 2 x , w h e n x ≤ 2 1 )
이다. 한편, 주어진 조건에서 τ = O ( 1 p 2 s 0 l n p n ) , s 0 l n p = O ( n ) \tau=O\left(\frac{1}{p^2}\sqrt{\frac{s _ 0lnp}{n}}\right), s _ 0lnp=O(n)τ = O ( p 2 1 n s 0 l n p ) , s 0 l n p = O ( n ) 이라 했으므로,
τ 1 p 2 s o l n p n ≤ c 1 , s o l n p n ≤ c 2 , c 1 , c 2 > 0 \frac{\tau}{\frac{1}{p^2}\sqrt{\frac{s _ olnp}{n}}}\leq c _ 1, \frac{s _ olnp}{n}\leq c _ 2,\ c _ 1,c _ 2>0
p 2 1 n s o l n p τ ≤ c 1 , n s o l n p ≤ c 2 , c 1 , c 2 > 0
임을 알 수 있다. 이들을 조합하면
⇒ τ p 2 ≤ c 2 c 1 c 3 ⇒ τ p 3 ≤ c 3 p ⇒ − τ p 3 ≥ − c 3 p \Rightarrow \ \tau p^2 \leq \sqrt{c _ 2}c _ 1 \overset{\text{\tiny def}}{=} c _ 3 \ \Rightarrow \tau p^3 \leq c _ 3p\ \Rightarrow \ -\tau p^3 \geq -c _ 3p
⇒ τ p 2 ≤ c 2 c 1 = def c 3 ⇒ τ p 3 ≤ c 3 p ⇒ − τ p 3 ≥ − c 3 p
이다. 이를 위 식 에서 활용하면,
e x p ( − 4 2 π 3 τ ζ p 3 ) ≥ e x p ( − c 3 4 2 π 3 ζ p ) = e x p ( − C p ) exp\left(-\frac{4\sqrt{2}}{\sqrt{\pi^3}}\tau \zeta p^3\right) \geq exp\left(-c _ 3 \frac{4\sqrt{2}}{\sqrt{\pi^3}} \zeta p\right)=exp(-Cp)
e x p ( − π 3 4 2 τ ζ p 3 ) ≥ e x p ( − c 3 π 3 4 2 ζp ) = e x p ( − Cp )
이다. 따라서, 두번째 밑줄 확률의 부등식을 다음과 같이 구할 수 있다.
π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) ≥ e x p ( − C p ) \pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1}) \geq exp(-Cp)
π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) ≥ e x p ( − Cp )
이제 첫 번째 밑줄 식과 두 번째 밑줄 식의 결과를 종합하면,
π u ( Σ ∈ U ( ζ ) ) ≥ π u ( ζ − 1 ≤ min j ( σ j j − ζ − 1 ) ≤ 2 max j σ j j ≤ ζ ) ∗ π u ( max k ≠ j ∣ σ k j ∣ < ( ζ p ) − 1 ) ≥ { λ ζ 8 e x p ( − λ ζ 4 ) } p e x p ( − C p ) = { λ ζ 8 e x p ( − λ ζ 4 − C ) } p \begin{gathered}
\pi^u(\Sigma \in \mathcal{U}(\zeta)) \geq \pi^u(\zeta^{-1}\leq\min\limits _ {j}(\sigma _ {jj}-\zeta^{-1})\leq 2\max\limits _ {j}\sigma _ {jj}\leq\zeta) \ * \ \pi^u(\max\limits _ {k \neq j}|\sigma _ {kj}|< (\zeta p)^{-1}) \\
\geq \left\{ \frac{\lambda \zeta}{8} exp(-\frac{\lambda \zeta}{4})\right\}^p exp(-Cp)=\left\{ \frac{\lambda \zeta}{8} exp(-\frac{\lambda \zeta}{4}-C)\right\}^p
\end{gathered}
π u ( Σ ∈ U ( ζ )) ≥ π u ( ζ − 1 ≤ j min ( σ jj − ζ − 1 ) ≤ 2 j max σ jj ≤ ζ ) ∗ π u ( k = j max ∣ σ kj ∣ < ( ζp ) − 1 ) ≥ { 8 λ ζ e x p ( − 4 λ ζ ) } p e x p ( − Cp ) = { 8 λ ζ e x p ( − 4 λ ζ − C ) } p
임을 알 수 있다.