1 Introduction

Let {xn}r’:’:1 € X be a dataset, § € ® c RP be a parameter, and 7y(6) be a prior. Put £,(6) = log p(x,|6) as a
log-likelihood for nth observation and £(6) = 5:1 L,(0) as a log-likelihood. The true posterior 77(6) is given as

1
n(9) = — exp(L(@)mo(),
where Z is the marginal likelihood: Z = f@ exp(L(9))x(0) db.

For w € RY, define L«(6) = Z;V:l wnLy(0). The idea of Bayesian coreset is approximating £ by using L«
with ||w|lo £ M and M < N. Formally, the objective is

minimize || £ - £]|> sub. to |lwllp < M.

2 Basic Algorithm from Huggins et al. (2016)

Algorithm 2.1 Coreset construction via importance sampling (Campbell and Broderick, 2017)
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1: forne{12 ., N} do
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6: forn e {1,2,...,N} do

7: Wp %Wn

8: end for

9: return w

Definition 2.1 (Approximate dimension). The approximate dimension dim(u,l)nN:l of N vectors in a normed vector
space is the minimum value of d € N such that all vectors u,, can be approximated using linear combinations of a
set of d unit vectors (vj);.izl, llvill = 1
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Theorem 2.1 (Campbell and Broderick, 2017). With probability > 1 — 6, the output of the Algorithm 2.1 satisfies
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Remark. The original theorem in the paper is wrong. See the remark in Lemma 2.1.

Lemma 2.1 (Campbell and Broderick, 2017). Suppose U and {U,,,}M:1 are i.i.d. random vectors in a normed

vector space with discrete support on {uy }fl\]: | with probabilities {py},", and
| M
Y= MZU,”—E[U] .
m=1

(a) Ifdim(u,,)ﬁ’:1 < d where dim is given by Definition 2.1,

- pn(l Pn)
Z Iz +VE[IUI7]] -

(b) Ifthe norm is a Hilbert norm,

BIY) < =B [I01P] - IEUIIE



(¢) The random variable Y,, = E[Y|F,, ]| with F,, the o-algebra generated by Uy, . .., U,, is a martingale that
satisfies, for m > 1, both

1
Yoo —Yu-1] £ — max|ju, —u
|m mll M nl ”n l”

and |
E [(Ym - Ym—l)zlfm—l] < WE [”U - Ulllz]

almost surely.

Proof.  (a) Denote M, Z 1 WU = uy). Also, denote «a,, as the coefficients used to approximate u,, as in
Definition 2.1. Then,
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where Ap,j = ZQ’:] njl(Up = up).
(b) Since ||Z]|? =(Z, Z),

E[Y] < VE[Y?] = J <Z(U ~ E[Un] Z( m—E[Um]>>=‘/LM\/E[||U||2]—||E[U]||2.

(c) Trivially, (¥,,)™ m=o 18 @ martingale. Fix m > 1, and put U] = U, for [ # m and U, g Uy, with U;,, L U and
U,, L U, for all [. Then,
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Remark. Var|U|| was in the original statement of Lemma 2.1(a) instead of E[||U||?], which is trivially incorrect.

Proof of Theorem 2.1. Note that the conditions for Lemma 2.1 are satisfied by putting u,, = 0 L, /0o, pn = /0,
and Y = || L« — L]|. This implies that |Y,,, — ¥;,,—1| < 5, so applying Azuma’s inequality yields

onq | 1 . .
Y <B[Y]+ ——+/2log = with probability > 1 -34.
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By applying Lemma 2.1 again, we can obtain

< STt 1 3P0 o O

/ 1
2log =
0g -
/ 1
< — 2d1m(£n)n +1+4/2log = | with probability > 1 —4.
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Note that ||u,|| = o for all n. O

3 Using Hilbert Norm Gives More Efficient Result (Campbell and Broderick, 2017)

Campbell and Broderick (2017) suggested using a Hilbert norm (i.e., a norm defined on inner product spaces) to
incorporate with directional informations.

Theorem 3.1 (Campbell and Broderick, 2017). With probability > 1 — 6, the output of the Algorithm 2.1 satisfies

o 1
LY - L] < —n+ 2log -
£ - £ J_@ [ 2log -
where || - || is a Hilbert norm and
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Proof. Applying Azuma’s inequality and martingale Bennet inequality gives

1 207 7 1
Y <E[Y]+mm{f/rﬁ 2log 5, %H—l (2Mn log6)} with probability > 1 — 6.

By applying Lemma 2.1 again, we can obtain

on  onum 1 o / 1 ) .
Y < — +——4/2lo g— = 7+ nm+f2log = with probability > 1 —¢. O
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In addition, Campbell and Broderick (2017) made some relaxation on the original optimization problem,
resulting in the following objective:

N
minimize || £¥ - £||> sub. to Zo-nwn =0.

n=1
They solve this problem by using Frank—Wolfe algorithm, which gives a more efficient result.

Theorem 3.2 (Campbell and Broderick, 2017). The output of the Algorithm 3.1 satisfies
onnv on

NP 2 (M=) M

where v = \/1 — r2/o2ij2 and r is the distance from L to the nearest boundary of the convex hull of {o Lo}

n=1"

Proof. See the paper. O

4 The Most Recent Algorithm is Campbell and Broderick (2018)

Campbell and Broderick (2018) found that Campbell and Broderick (2017) underestimates posterior uncertainty,
so they added a scale term in the objective:

minimize ||@L? - £]|*> sub. to @ > 0,]|wllo < M.
Since @ can be solved analytically, this results in
maximize (¢“,€) sub. to |[€“|| =1, ||wllo £ M.

Applying the greedy algorithm gives Algorithm 4.1.



Algorithm 3.1 Coreset construction via Frank—Wolfe (Campbell and Broderick, 2017)

Require: (£,)" . M, (-,-).
1: forne{lz ., N} do
IILnII
end for
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7: repeat
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9: Y =
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11: until M — 1 times o
12: return w

Algorithm 4.1 GIGA: Greedy Iterative Geodesic Ascent (Campbell and Broderick, 2018)

Require: (Ln)n M, ().
1: forne{1,2,...,N} do

. L
2: 5*Mw
3: end for
. L
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6: repeat
7: for n € {1, 2
’ n Ht’n (f 6"">f“‘||
9: end for
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15: until M times

16: for n € {1, 2 N}do
17: Wy — HL H (t"“ ) w
18: end for

19: return w
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Theorem 4.1 (Campbell and Broderick, 2018). The output of the Algorithm 4.1 satisfies || L* — L] < nl|L]va,
where vy is decreasing and < 1 for all M € N, vy = O(v™) for some 0 < v < 1, and

n=\/1‘(ne{“1“ <||f:|| ||f:||>)2

Proof. See the paper. O

5 Random Projection
Which norm is the most suitable for picking the coreset? Campbell and Broderick (2017) suggested followings:

(Lns ~£m>fr,F =Ex [VLn(G)TVLm(Q)] >
(Lns Lin) 22 = Bz [La(0) Lin(0)],

where 7 would ideally be chosen equal to 7 to emphasize discrepancies that are in regions of high posterior mass.
Unfortunately, evaluating such norms is often intractable. So they suggested using random projections of the
(.[Z,,)nl\’:1 into a J dimensional vector space using samples from 7 (see Algorithm 5.1).



Algorithm 5.1 Random projection (Campbell and Broderick, 2017)

Require: (Ln) A M, J.
I: fOI‘JE{12 .,J} do
Hj ~iid R and dj ~iiq. Unif({1,2,...,D}).
end for
forne{l,2,...,N} do
Ly — DIV Lu()ays - - (VL)) 17 o Lo = T L), o, La(up)]T
end for
return CoresetAlgorithm ((V")n M- ||2)
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Theorem 5.1 (Campbell and Broderick, 2017). Let u ~ #, d ~ Unif({1, ..., D}), and suppose DV L,,(11)aV L (1) 4
(given || - la.r) or Ln(1)Lm(1) (given || - ||4.2) is sub-Gaussian with constant £2. With probability > 1 — 6, the
output of the Algorithm 5.1 satisfies

A A 282 2N?
129 = L1 3y < 1L° = 1B + o = 11 - tog 25

Proof. Consider only || - || = || - ||z, 7. Denote K,V as the kernel matrix defined by K;; = <.Ei, Lj) and
Vij = (L, L;). By Hoeffding’s inequality,

P | max | K,y — Vin| = 6) < N?>max P(|Kpn — Viun| = €)
J
maxP Z (DV-Em(/’lj )a;VLn(pj)a; — Ea [VLm(Q)TVLn(Q)]) > Je
J=1
Je 2
<2N?exp |-—
282
This implies that
2£2 2N?
max |Kyn — Vinn| < % log 5 with probability > 1-6
Therefore,

L9 = LI2p =129 = LIE = (@~ D K@- D= @-D)"V(@-1) < > |wm ~ wn = 1[Kn = Vil

m,n

2
< ||lw - 1||2max|Kmn = Vol < ||lw = 1||1 f log T with probability > 1 - 6.

The theorem can be proved for || - || = || - ||4,2 in a similiar manner. O
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A Supplementary Lemmas

Lemma A.1 (Azuma’s inequality). Suppose (Ym),,[‘;[:o is a martingale adapted to the filtration (¥, ,A;’:O. If there is
a constant & such that for eachm € {1,..., M},

Y = Yio1] €€ aus,,

then for all € > 0,
2
P(Yy =Yy > €) < e &2,

Lemma A.2 (Martingale Bennet inequality). Suppose (Ym)%=o is a martingale adapted to the filtration (7—7,1)%:0.
If there are constants & and T2 such that for each m € {1, ..., M},

[Yim —Ym-1| <& and E [(Ym - Ym—l)lem—l] < 72 a.s.,

then for all € > 0,

_ Mz g
PYy-Yy>e)<e & H(MTZ), where H(x) = (1 + x)log(1 + x) — x.
Lemma A.3 (Hoeffding’s inequality for sub-Gaussian). If (Xn)f:’:l are independent sub-Gaussian with constant
fﬁ respectively, then for all t > 0,

N
P

)
w—EXy) 21| < -—.
(X X)>t) <exp( 225:1&21)

n=1



