Introduction

Let $\{x_n\}_{n=1}^N \in \mathcal{X}$ be a dataset, $\theta \in \Theta \subset \mathbb{R}^D$ be a parameter, and $\pi_0(\theta)$ be a prior. Put $\mathcal{L}_n(\theta) = \log p(x_n|\theta)$ as a log-likelihood for nth observation and $\mathcal{L}(\theta) = \sum_{n=1}^N \mathcal{L}_n(\theta)$ as a log-likelihood. The true posterior $\pi(\theta)$ is given as

$$\pi(\theta) = \frac{1}{Z} \exp(\mathcal{L}(\theta)) \pi_0(\theta),$$

where Z is the marginal likelihood: $Z = \int_{\Theta} \exp(\mathcal{L}(\theta)) \pi(\theta) d\theta$.

For $\omega \in \mathbb{R}^N_+$, define $\mathcal{L}^{\omega}(\theta) = \sum_{n=1}^N \omega_n \mathcal{L}_n(\theta)$. The idea of Bayesian coreset is approximating \mathcal{L} by using \mathcal{L}^{ω} with $\|\omega\|_0 \leq M$ and $M \ll N$. Formally, the objective is

minimize
$$\|\mathcal{L}^{\omega} - \mathcal{L}\|^2$$
 sub. to $\|\omega\|_0 \le M$.

Basic Algorithm from Huggins et al. (2016)

Algorithm 2.1 Coreset construction via importance sampling (Campbell and Broderick, 2017)

Require: $(\mathcal{L}_n)_{n=1}^N$, M, $\|\cdot\|$. 1: for $n \in \{1, 2, ..., N\}$ do

 $\sigma_n \leftarrow \|\mathcal{L}_n\|$

3: **end for** 4: $\sigma \leftarrow \sum_{n=1}^{N} \sigma_n$

5: $(M_1, ..., M_N) \sim \text{Multi}\left(M, \left(\frac{\sigma_n}{\sigma}\right)_{n=1}^N\right)$ 6: **for** $n \in \{1, 2, ..., N\}$ **do** 7: $\omega_n \leftarrow \frac{\sigma}{\sigma_n} \frac{M_n}{M}$

9: return ω

Definition 2.1 (Approximate dimension). The *approximate dimension* $\dim(u_n)_{n=1}^N$ of N vectors in a normed vector space is the minimum value of $d \in \mathbb{N}$ such that all vectors u_n can be approximated using linear combinations of a set of d unit vectors $(v_j)_{j=1}^d$, $||v_j|| = 1$:

$$\forall n \in \{1, ..., N\}, \exists \alpha \in [-1, 1]^d : \left\| \frac{u_n}{\|u_n\|} - \sum_{j=1}^d \alpha_j v_j \right\| \le \frac{d}{\sqrt{N}}.$$

Theorem 2.1 (Campbell and Broderick, 2017). With probability $\geq 1 - \delta$, the output of the Algorithm 2.1 satisfies

$$\|\mathcal{L}^{\omega} - \mathcal{L}\| \leq \frac{\sigma}{\sqrt{M}} \left(2\dim(\mathcal{L}_n)_{n=1}^N + \bar{\eta}\sqrt{2\log\frac{1}{\delta}} \right), \quad \text{where } \bar{\eta} = \max_{n,m \in \{1,\dots,N\}} \left\| \frac{\mathcal{L}_n}{\sigma_n} - \frac{\mathcal{L}_m}{\sigma_m} \right\|.$$

Remark. The original theorem in the paper is *wrong*. See the remark in Lemma 2.1.

Lemma 2.1 (Campbell and Broderick, 2017). Suppose U and $\{U_m\}_{m=1}^M$ are i.i.d. random vectors in a normed vector space with discrete support on $\{u_n\}_{n=1}^N$ with probabilities $\{p_n\}_{n=1}^M$, and

$$Y := \left\| \frac{1}{M} \sum_{m=1}^{M} U_m - \mathbb{E}[U] \right\|.$$

(a) If $\dim(u_n)_{n=1}^N \le d$ where dim is given by Definition 2.1,

$$\mathbb{E}[Y] \le \frac{d}{\sqrt{M}} \left(\sum_{n=1}^{N} \|u_n\| \sqrt{\frac{p_n(1-p_n)}{N}} + \sqrt{\mathbb{E}[\|U\|^2]} \right).$$

(b) If the norm is a Hilbert norm,

$$\mathbb{E}[Y] \le \frac{1}{\sqrt{M}} \sqrt{\mathbb{E}\left[\|U\|^2\right] - \|\mathbb{E}[U]\|^2}.$$

(c) The random variable $Y_m := \mathbb{E}[Y|\mathcal{F}_m]$ with \mathcal{F}_m the σ -algebra generated by U_1, \ldots, U_m is a martingale that satisfies, for $m \ge 1$, both

$$|Y_m - Y_{m-1}| \le \frac{1}{M} \max_{n,l} ||u_n - u_l||$$

and

$$\mathbb{E}\left[(Y_m - Y_{m-1})^2 | \mathcal{F}_{m-1}\right] \le \frac{1}{M^2} \mathbb{E}\left[\|U - U_1\|^2\right]$$

almost surely.

Proof. (a) Denote $M_n = \sum_{m=1}^M \mathbb{I}(U_m = u_n)$. Also, denote α_n as the coefficients used to approximate u_n as in Definition 2.1. Then,

$$\begin{split} \mathbb{E}[Y] &\leq \frac{1}{M} \mathbb{E} \left\| \sum_{n=1}^{N} (M_n - Mp_n) u_n \right\| \\ &\leq \frac{1}{M} \sum_{n=1}^{N} \mathbb{E}|M_n - Mp_n| \left\| u_n - \sum_{j=1}^{d} \alpha_{nj} \|u_n\| v_j \right\| + \frac{1}{M} \mathbb{E} \left\| \sum_{n=1}^{N} (M_n - Mp_n) \left(\sum_{j=1}^{d} \alpha_{nj} \|u_n\| v_j \right) \right\| \\ &\leq \frac{1}{M} \sum_{n=1}^{N} \frac{d\|u_n\|}{\sqrt{N}} \mathbb{E}|M_n - Mp_n| + \frac{1}{M} \sum_{j=1}^{d} \mathbb{E} \left| \sum_{n=1}^{N} (M_n - Mp_n) \|u_n\| \alpha_{nj} \right| \\ &\leq \frac{1}{M} \sum_{n=1}^{N} \frac{d\|u_n\|}{\sqrt{N}} \sqrt{\mathbb{E}(M_n - Mp_n)^2} + \frac{1}{M} \sum_{j=1}^{d} \sqrt{\mathbb{E} \left(\sum_{n=1}^{N} (M_n - Mp_n) \|u_n\| \alpha_{nj} \right)^2} \\ &\leq \frac{1}{\sqrt{M}} \sum_{n=1}^{N} d\|u_n\| \sqrt{\frac{p_n(1 - p_n)}{N}} + \frac{1}{M} \sum_{j=1}^{d} \sqrt{\sum_{m=1}^{M} Var(A_{mj} \|U_{mj}\|)} \\ &= \frac{d}{\sqrt{M}} \left(\sum_{n=1}^{N} \|u_n\| \sqrt{\frac{p_n(1 - p_n)}{N}} + \sqrt{\mathbb{E}[\|U\|^2]} \right), \end{split}$$

where $A_{mj} = \sum_{n=1}^{N} \alpha_{nj} \mathbb{I}(U_m = u_n)$.

(b) Since $||Z||^2 = \langle Z, Z \rangle$,

$$\mathbb{E}[Y] \leq \sqrt{\mathbb{E}[Y^2]} = \frac{1}{M} \sqrt{\mathbb{E}\left(\sum_{m=1}^{M} (U_m - \mathbb{E}[U_m]), \sum_{m=1}^{M} (U_m - \mathbb{E}[U_m])\right)} = \frac{1}{\sqrt{M}} \sqrt{\mathbb{E}\left[\|U\|^2\right] - \|\mathbb{E}[U]\|^2}.$$

(c) Trivially, $(Y_m)_{m=0}^M$ is a martingale. Fix $m \ge 1$, and put $U_l' = U_l$ for $l \ne m$ and $U_m' \stackrel{d}{=} U_m$ with $U_m' \perp U$ and $U_m' \perp U_l$ for all l. Then,

$$\begin{aligned} |Y_{m} - Y_{m-1}| &= \left| \mathbb{E} \left[\left\| \frac{1}{M} \sum_{l=1}^{M} U_{l} - \mathbb{E}[U] \right\| \mid \mathcal{F}_{m} \right] - Y_{m-1} \right| \\ &\leq \left| \mathbb{E} \left[\left\| \frac{1}{M} (U_{m} - U'_{m}) \right\| \mid \mathcal{F}_{m} \right] + \mathbb{E} \left[\left\| \frac{1}{M} \sum_{l=1}^{M} U'_{l} - \mathbb{E}[U] \right\| \mid \mathcal{F}_{m} \right] - Y_{m-1} \right| \\ &= \frac{1}{M} \mathbb{E} \left[\left\| U_{m} - U'_{m} \right\| \mid \mathcal{F}_{m} \right] \leq \frac{1}{M} \max_{n,l} \left\| u_{n} - u_{l} \right\|, \\ \mathbb{E} \left[\left(Y_{m} - Y_{m-1} \right)^{2} \mid \mathcal{F}_{m-1} \right] \leq \mathbb{E} \left[\left(\frac{1}{M} \mathbb{E} \left[\left\| U_{m} - U'_{m} \right\| \mid \mathcal{F}_{m} \right] \right)^{2} \mid \mathcal{F}_{m-1} \right] \leq \frac{1}{M^{2}} \mathbb{E} \left[\left\| U_{m} - U'_{m} \right\|^{2} \right]. \end{aligned}$$

Remark. Var||U|| was in the original statement of Lemma 2.1(a) instead of $\mathbb{E}[||U||^2]$, which is trivially incorrect.

Proof of Theorem 2.1. Note that the conditions for Lemma 2.1 are satisfied by putting $u_n = \sigma \mathcal{L}_n/\sigma_n$, $p_n = \sigma_n/\sigma$, and $Y = \|\mathcal{L}^{\omega} - \mathcal{L}\|$. This implies that $|Y_m - Y_{m-1}| \leq \frac{\sigma \bar{\eta}}{M}$, so applying Azuma's inequality yields

$$Y \leq \mathbb{E}[Y] + \frac{\sigma \bar{\eta}}{\sqrt{M}} \sqrt{2 \log \frac{1}{\delta}}$$
 with probability $\geq 1 - \delta$.

By applying Lemma 2.1 again, we can obtain

$$Y \leq \frac{\dim(\mathcal{L}_n)_{n=1}^N}{\sqrt{M}} \left(\|u_n\| \sum_{n=1}^N \sqrt{\frac{p_n(1-p_n)}{N}} + \sqrt{\mathbb{E}[\|U\|^2]} \right) + \frac{\sigma\bar{\eta}}{\sqrt{M}} \sqrt{2\log\frac{1}{\delta}}$$

$$\leq \frac{\sigma}{\sqrt{M}} \left(2\dim(\mathcal{L}_n)_{n=1}^N + \bar{\eta}\sqrt{2\log\frac{1}{\delta}} \right) \quad \text{with probability } \geq 1 - \delta.$$

Note that $||u_n|| = \sigma$ for all n.

3 Using Hilbert Norm Gives More Efficient Result (Campbell and Broderick, 2017)

Campbell and Broderick (2017) suggested using a Hilbert norm (*i.e.*, a norm defined on inner product spaces) to incorporate with *directional* informations.

Theorem 3.1 (Campbell and Broderick, 2017). With probability $\geq 1 - \delta$, the output of the Algorithm 2.1 satisfies

$$\|\mathcal{L}^{\omega} - \mathcal{L}\| \le \frac{\sigma}{\sqrt{M}} \left(\eta + \eta_M \sqrt{2 \log \frac{1}{\delta}} \right)$$

where $\|\cdot\|$ is a Hilbert norm and

$$\eta = \sqrt{1 - \frac{\|\mathcal{L}\|^2}{\sigma^2}}, \quad \eta_M = \min\left\{\bar{\eta}, \eta\sqrt{\frac{2M\eta^2}{\bar{\eta}^2\log\frac{1}{\delta}}}H^{-1}\left(\frac{\bar{\eta}^2\log\frac{1}{\delta}}{2M\eta^2}\right)\right\}, \quad H(y) = (1+y)\log(1+y) - y.$$

Proof. Applying Azuma's inequality and martingale Bennet inequality gives

$$Y \leq \mathbb{E}[Y] + \min \left\{ \frac{\sigma \bar{\eta}}{\sqrt{M}} \sqrt{2 \log \frac{1}{\delta}}, \frac{2\sigma \eta^2}{\bar{\eta}} H^{-1} \left(\frac{\bar{\eta}^2}{2M\eta^2} \log \frac{1}{\delta} \right) \right\} \quad \text{with probability } \geq 1 - \delta.$$

By applying Lemma 2.1 again, we can obtain

$$Y \leq \frac{\sigma\eta}{\sqrt{M}} + \frac{\sigma\eta_M}{\sqrt{M}} \sqrt{2\log\frac{1}{\delta}} = \frac{\sigma}{\sqrt{M}} \left(\eta + \eta_M \sqrt{2\log\frac{1}{\delta}} \right) \quad \text{with probability } \geq 1 - \delta.$$

In addition, Campbell and Broderick (2017) made some relaxation on the original optimization problem, resulting in the following objective:

minimize
$$\|\mathcal{L}^{\omega} - \mathcal{L}\|^2$$
 sub. to $\sum_{n=1}^{N} \sigma_n \omega_n = \sigma$.

They solve this problem by using Frank-Wolfe algorithm, which gives a more efficient result.

Theorem 3.2 (Campbell and Broderick, 2017). The output of the Algorithm 3.1 satisfies

$$\|\mathcal{L}^{\omega} - \mathcal{L}\| \le \frac{\sigma \eta \bar{\eta} \nu}{\sqrt{\bar{n}^2 \nu^{-2(M-2)} + n^2(M-1)}} \le \frac{\sigma \bar{\eta}}{\sqrt{M}},$$

where $v = \sqrt{1 - r^2/\sigma^2\bar{\eta}^2}$ and r is the distance from \mathcal{L} to the nearest boundary of the convex hull of $\{\sigma \mathcal{L}_n/\sigma_n\}_{n=1}^N$. Proof. See the paper.

4 The Most Recent Algorithm is Campbell and Broderick (2018)

Campbell and Broderick (2018) found that Campbell and Broderick (2017) underestimates posterior uncertainty, so they added a scale term in the objective:

$$\text{minimize } \|\alpha\mathcal{L}^{\omega}-\mathcal{L}\|^2 \quad \text{ sub. to } \alpha \geq 0, \|\omega\|_0 \leq M.$$

Since α can be solved analytically, this results in

maximize
$$\langle \ell^{\omega}, \ell \rangle$$
 sub. to $\|\ell^{\omega}\| = 1, \|\omega\|_0 \le M$.

Applying the greedy algorithm gives Algorithm 4.1.

Algorithm 3.1 Coreset construction via Frank-Wolfe (Campbell and Broderick, 2017)

```
Require: (\mathcal{L}_n)_{n=1}^N, M, \langle \cdot, \cdot \rangle.

1: for n \in \{1, 2, ..., N\} do

2: \sigma_n \leftarrow \|\mathcal{L}_n\|

3: end for

4: \sigma \leftarrow \sum_{n=1}^N \sigma_n

5: m \leftarrow \arg\max_{n \in \{1, 2, ..., N\}} \left\langle \mathcal{L}, \frac{1}{\sigma_n} \mathcal{L}_n \right\rangle

6: \omega \leftarrow \frac{\sigma}{\sigma_m} \mathbf{1}_m

7: repeat

8: m \leftarrow \arg\max_{n \in \{1, 2, ..., N\}} \left\langle \mathcal{L} - \mathcal{L}^{\omega}, \frac{1}{\sigma_n} \mathcal{L}_n \right\rangle

9: \gamma \leftarrow \frac{\left\langle \mathcal{L}_m - \mathcal{L}^{\omega}, \frac{\sigma}{\sigma_m} \mathcal{L}_m - \mathcal{L}^{\omega} \right\rangle}{\|\frac{\sigma}{\sigma_m} \mathcal{L}_m - \mathcal{L}^{\omega}\|}

10: \omega \leftarrow (1 - \gamma)\omega + \gamma \frac{\sigma}{\sigma_m} \mathbf{1}_m

11: until M - 1 times

12: return \omega
```

Algorithm 4.1 GIGA: Greedy Iterative Geodesic Ascent (Campbell and Broderick, 2018)

```
Require: (\mathcal{L}_n)_{n=1}^N, M, \langle \cdot, \cdot \rangle.

1: for n \in \{1, 2, ..., N\} do

2: \ell_n \leftarrow \frac{\mathcal{L}_n}{\|\mathcal{L}_n\|}
        3: end for
        4: \ell \leftarrow \frac{\mathcal{L}}{\|\mathcal{L}\|}
5: \omega \leftarrow \mathbf{0}
        6: repeat
                                        for n \in \{1, 2, ..., N\} do
d_n \leftarrow \frac{\ell_n - \langle \ell_n, \ell^{\omega} \rangle \ell^{\omega}}{\|\ell_n - \langle \ell_n, \ell^{\omega} \rangle \ell^{\omega}\|}
end for
d \leftarrow \frac{\ell - \langle \ell, \ell^{\omega} \rangle \ell^{\omega}}{\|\ell - \langle \ell, \ell^{\omega} \rangle \ell^{\omega}\|}
        7:
         8:
        9:
    10:
                                       k \leftarrow \underset{n \in \{1,2,\dots,N\}}{\operatorname{arg max}} \langle d, d_n \rangle
\xi_1 \leftarrow \langle \ell, \ell_k \rangle, \xi_2 \leftarrow \langle \ell, \ell^\omega \rangle, \xi_3 \leftarrow \langle \ell_k, \ell^\omega \rangle
\gamma \leftarrow \frac{\xi_0 - \xi_1 \xi_2}{(\xi_0 - \xi_1 \xi_2) + (\xi_1 - \xi_0 \xi_2)}
\omega \leftarrow \frac{(1 - \gamma)\omega + \gamma_k}{\|(1 - \gamma)\ell^\omega + \gamma \ell_k\|}
while M times
    11:
    12:
    13:
    14:
    15: until M times
   16: for n \in \{1, 2, ..., N\} do
17: \omega_n \leftarrow \frac{\|\mathcal{L}\|}{\|\mathcal{L}_n\|} \langle \ell^{\omega}, \ell \rangle \omega_n
    18: end for
    19: return \omega
```

Theorem 4.1 (Campbell and Broderick, 2018). The output of the Algorithm 4.1 satisfies $\|\mathcal{L}^{\omega} - \mathcal{L}\| \le \eta \|\mathcal{L}\| \nu_M$, where ν_M is decreasing and ≤ 1 for all $M \in \mathbb{N}$, $\nu_M = O(\nu^M)$ for some $0 < \nu < 1$, and

$$\eta = \sqrt{1 - \left(\max_{n \in \{1, \dots, N\}} \left\langle \frac{\mathcal{L}_n}{\|\mathcal{L}_n\|}, \frac{\mathcal{L}}{\|\mathcal{L}\|} \right\rangle \right)^2}$$

Proof. See the paper.

5 Random Projection

Which norm is the most suitable for picking the coreset? Campbell and Broderick (2017) suggested followings:

$$\begin{cases} \langle \mathcal{L}_n, \mathcal{L}_m \rangle_{\hat{\pi}, F} = \mathbb{E}_{\hat{\pi}} \left[\nabla \mathcal{L}_n(\theta)^{\top} \nabla \mathcal{L}_m(\theta) \right], \\ \langle \mathcal{L}_n, \mathcal{L}_m \rangle_{\hat{\pi}, 2} = \mathbb{E}_{\hat{\pi}} \left[\mathcal{L}_n(\theta) \mathcal{L}_m(\theta) \right], \end{cases}$$

where $\hat{\pi}$ would ideally be chosen equal to π to emphasize discrepancies that are in regions of high posterior mass. Unfortunately, evaluating such norms is often intractable. So they suggested using random projections of the $(\mathcal{L}_n)_{n=1}^N$ into a J dimensional vector space using samples from $\hat{\pi}$ (see Algorithm 5.1).

Algorithm 5.1 Random projection (Campbell and Broderick, 2017)

Require: $(\mathcal{L}_{n})_{n=1}^{N}$, $\hat{\pi}$, M, J. 1: **for** $j \in \{1, 2, ..., J\}$ **do** 2: $\mu_{j} \sim_{i.i.d.} \hat{\pi}$ and $d_{j} \sim_{i.i.d.}$ Unif($\{1, 2, ..., D\}$). 3: **end for** 4: **for** $n \in \{1, 2, ..., N\}$ **do** 5: $\hat{\mathcal{L}}_{n} \leftarrow \sqrt{D/J}[(\nabla \mathcal{L}_{n}(\mu_{1}))_{d_{1}}, ..., (\nabla \mathcal{L}_{n}(\mu_{J}))_{d_{J}}]^{\top}$ or $\hat{\mathcal{L}}_{n} \leftarrow \sqrt{1/J}[\mathcal{L}_{n}(\mu_{1}), ..., \mathcal{L}_{n}(\mu_{J})]^{\top}$ 6: **end for** 7: **return** CoresetAlgorithm $((v_{n})_{n=1}^{N}, M, \| \cdot \|_{2})$

Theorem 5.1 (Campbell and Broderick, 2017). Let $\mu \sim \hat{\pi}$, $d \sim \text{Unif}(\{1, ..., D\})$, and suppose $D\nabla \mathcal{L}_n(\mu)_d \nabla \mathcal{L}_m(\mu)_d$ (given $\|\cdot\|_{\hat{\pi},F}$) or $\mathcal{L}_n(\mu)\mathcal{L}_m(\mu)$ (given $\|\cdot\|_{\hat{\pi},2}$) is sub-Gaussian with constant ξ^2 . With probability $\geq 1 - \delta$, the output of the Algorithm 5.1 satisfies

$$\|\mathcal{L}^{\omega} - \mathcal{L}\|_{\hat{\pi}, 2/F}^{2} \leq \|\hat{\mathcal{L}}^{\omega} - \hat{\mathcal{L}}\|_{2}^{2} + \|\omega - 1\|_{1}^{2} \sqrt{\frac{2\xi^{2}}{J} \log \frac{2N^{2}}{\delta}}.$$

Proof. Consider only $\|\cdot\| = \|\cdot\|_{\hat{\pi},F}$. Denote K,V as the kernel matrix defined by $K_{ij} = \langle \mathcal{L}_i, \mathcal{L}_j \rangle$ and $V_{ij} = \langle \hat{\mathcal{L}}_i, \hat{\mathcal{L}}_j \rangle$. By Hoeffding's inequality,

$$P\left(\max_{m,n} |K_{mn} - V_{mn}| \ge \epsilon\right) \le N^2 \max_{m,n} P(|K_{mn} - V_{mn}| \ge \epsilon)$$

$$= N^2 \max_{m,n} P\left(\left|\sum_{j=1}^{J} \left(D\nabla \mathcal{L}_m(\mu_j)_{d_j} \nabla \mathcal{L}_n(\mu_j)_{d_j} - \mathbb{E}_{\hat{\pi}} \left[\nabla \mathcal{L}_m(\theta)^\top \nabla \mathcal{L}_n(\theta)\right]\right)\right| \ge J\epsilon\right)$$

$$\le 2N^2 \exp\left(-\frac{J\epsilon^2}{2\xi^2}\right).$$

This implies that

$$\max_{m,n} |K_{mn} - V_{mn}| \le \sqrt{\frac{2\xi^2}{J} \log \frac{2N^2}{\delta}} \quad \text{with probability } \ge 1 - \delta.$$

Therefore,

$$\begin{split} \|\mathcal{L}^{\omega} - \mathcal{L}\|_{\hat{\pi},F}^2 - \|\hat{\mathcal{L}}^{\omega} - \hat{\mathcal{L}}\|_2^2 &= (\omega - 1)^{\mathsf{T}} K(\omega - 1) - (\omega - 1)^{\mathsf{T}} V(\omega - 1) \leq \sum_{m,n} |\omega_m - 1| |\omega_n - 1| |K_{mn} - V_{mn}| \\ &\leq \|\omega - 1\|_1^2 \max_{m,n} |K_{mn} - V_{mn}| \leq \|\omega - 1\|_1^2 \sqrt{\frac{2\xi^2}{J} \log \frac{2N^2}{\delta}} \quad \text{with probability } \geq 1 - \delta. \end{split}$$

The theorem can be proved for $\|\cdot\| = \|\cdot\|_{\hat{\pi},2}$ in a similar manner.

Bibliography

Campbell, T. and T. Broderick (2017). Automated Scalable Bayesian Inference via Hilbert Coresets. *arXiv* preprint *arXiv*:1710.05053v1.

Campbell, T. and T. Broderick (2018). Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent. *arXiv* preprint arXiv:1802.01737v2.

Huggins, J. H., T. Campbell, and T. Broderick (2016). Coresets for Scalable Bayesian Logistic Regression. *arXiv* preprint arXiv:1605.06423v3.

A Supplementary Lemmas

Lemma A.1 (Azuma's inequality). Suppose $(Y_m)_{m=0}^M$ is a martingale adapted to the filtration $(\mathcal{F}_m)_{m=0}^M$. If there is a constant ξ such that for each $m \in \{1, \ldots, M\}$,

$$|Y_m - Y_{m-1}| \le \xi \quad a.s.,$$

then for all $\epsilon \geq 0$,

$$P(Y_M - Y_0 > \epsilon) \le e^{-\frac{\epsilon^2}{2M\xi^2}}.$$

Lemma A.2 (Martingale Bennet inequality). Suppose $(Y_m)_{m=0}^M$ is a martingale adapted to the filtration $(\mathcal{F}_m)_{m=0}^M$. If there are constants ξ and τ^2 such that for each $m \in \{1, \ldots, M\}$,

$$|Y_m - Y_{m-1}| \le \xi$$
 and $\mathbb{E}\left[(Y_m - Y_{m-1})^2 | \mathcal{F}_{m-1}\right] \le \tau^2$ a.s.,

then for all $\epsilon \geq 0$,

$$P(Y_M - Y_0 > \epsilon) \le e^{-\frac{M\tau^2}{\xi^2}H\left(\frac{\epsilon\xi}{M\tau^2}\right)}, \quad where \ H(x) = (1+x)\log(1+x) - x.$$

Lemma A.3 (Hoeffding's inequality for sub-Gaussian). If $(X_n)_{n=1}^N$ are independent sub-Gaussian with constant ξ_n^2 respectively, then for all $t \ge 0$,

$$P\left(\sum_{n=1}^{N}(X_n - \mathbb{E}X_n) \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{n=1}^{N}\xi_n^2}\right).$$